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A number of di�erent mechanisms exist which can produce vector perturbations to the metric.

One might think that such perturbations could deect light rays from distant sources, producing

observable e�ects. Indeed, this is expected to be the case for scalar perturbations. Here we show

that the deection from vector perturbations is very small, remaining constant over large distances,

similar to the deection due to tensor perturbations (gravity waves).

I. INTRODUCTION

Light travels along geodesics. As such its path is determined by the gravitational metric. When the metric deviates

from a simple Minkowski form, light ceases to travel in straight lines. Were we to detect deviations from straight-line

travel, we would be probing the very structure of the gravitational metric. In many cases, particularly in cosmology,

knowledge of the metric is invaluable. For example, if we detected scalar perturbations to the metric, we would

learn something about the source of these perturbations, the mass distribution. Since we are otherwise limited to

information about the distribution of luminous objects such as stars and galaxies, direct information about the mass

is tremendously important. There have been numerous successful e�orts along these lines recently, among them maps

of the distribution of mass in clusters of galaxies [1] and detections of massive compact objects in the halo of our

galaxy [2]. Future e�orts will likely reveal much about the mass distribution in the universe [3], o�ering independent

estimates of quantities such as the power spectrum.

Over the years a number of groups [4,5] have explored the possibility of detecting tensor perturbations to the

metric in this fashion. Among other reasons, tensor perturbations are interesting because they are produced during

ination [6]. Thus a direct probe of tensor perturbations in principle gives us information about ination. However,

the consensus is now that such perturbations are much harder to detect than are scalar perturbations. A scalar

perturbation to the metric can coherently add to the displacement of light over very large distances. This is not true

for tensor perturbations.

These studies naturally lead to the question of whether vector perturbations to the metric can be detected. This is

more than an academic question: Recent studies have shown that defect theories of structure formation produce large

vector perturbations to the metric [7,8]. Measuring light deection via vector perturbations is one way then to search

for elusive topological defects. Other, less speculative, ways of producing vector perturbations include magnetic �elds

which should excite vector modes.

Here we study the e�ect of vector perturbations on light propagation. In a random �eld, the deection due to scalar

perturbations grows as D3=2 where D is the distance travelled. The deection due to tensor modes was shown [5] to

grow only logarithmically asD gets large. For vector modes, we �nd even less of an e�ect; the rms deection is constant

over large distances. Thus we expect light deection to be an ine�cient way to search for vector perturbations. Section

II presents a handwaving summary of the Kaiser-Ja�e argument for why tensor modes do not produce deviations and

extends this argument to vector perturbations. Section III makes this argument more rigorous.

II. LIGHT DEFLECTION IN THE PRESENCE OF PLANE WAVE METRIC PERTURBATION

We write the metric as

g�� = ��� + h�� (2.1)
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where the Minkowski metric ��� = (1;�1;�1;�1). We will use conventions in which Greek indices run over all four

space-time coordinates and Latin indices are spatial; also we set c = 1.

Consider light travelling in the ẑ direction in the presence of a single plane wave h�� with wavevector

~k = k
�p

1� �2; 0; �
�
: (2.2)

Scalar perturbations are standing waves so h�� / ei
~k�~x, while tensor perturbations travel at the speed of light so

h�� / ei(kt�
~k�~x). Kaiser and Ja�e showed that the displacements in the directions perpendicular to the direction of

propagation (ẑ) obey the geodesic equations

�dScalar / keikz� (2.3)

�dTensor / k(1� �)3=2eikz(1��): (2.4)

Here dots denote derivative with respect to position z and the perpendicular displacement is d. The change in the

direction, or the displacement angle, after the photons have travelled a distance D is therefore

_dScalar /
1

�

�
eikD�

� 1
�

(2.5)

_dTensor / (1� �)1=2
h
eikD(1��)

� 1
i
: (2.6)

In the scalar case, ~k-modes perpendicular to the ẑ direction in which light is travelling (i.e. those with � = 0) produce

an abnormally large displacement angle. Expanding out the exponential, we �nd _dScalar � kD as long as � < 1=(kD).

As the light travels further and further, its displacement angle gets larger and larger. This is physically reasonable

in this simple case where the metric consists of only one plane wave. For, the photon can indeed get a large kick by

simply travelling perpendicular to the direction in which the �eld is changing. It then experiences a constant force,

getting a constant kick and corresponding boost in the displacement angle. For tensors the situation is completely

di�erent. In that case, for the light to see a constant �eld, it needs to travel along with the gravity wave. That is,

to experience a coherent push, the photon needs to travel in the direction along which the �eld is changing, � = 1.

Due to the (1 � �)1=2 factor in front, though, the displacement when travelling in this direction is zero. So the

typical displacement angle of light travelling in a tensor perturbation will be of order the �eld strength. It will not be

enhanced by a factor of order kD as it travels a long distance. Tensor perturbations do not produce observable light

deections because distortions are suppressed when light travels in the resonant direction.

How does light behave in the presence of vector modes? Consider the following vector �eld

h�� =

0
BB@
0 0 0 0

0 0 �
p
1� �2 0

0 �
p
1� �2 0 ��

0 0 �� 0

1
CCA ei

~k�~x; (2.7)

where ~k is again de�ned as in 2.2. Borrowing from the next section, we write down the geodesic equation for light

travelling in the presence of this metric:

�diVector = �
@hiz

@z
= �iyik�

2eikz�: (2.8)

Comparing 2.8 with 2.3, we see that the change in the deection is suppressed by a relative factor �2 in the resonant

direction. Thus, even if kz� is small, the deection is still small; there is no resonance. All modes contribute an equal

(small) amount; there is nothing special about the � = 0 mode. There will be no accumulated displacement as light

travels long distances.
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III. DEFLECTION IN RANDOM VECTOR FIELD

We now make the argument of the previous section more rigorous, introducing a general vector perturbation as a

random sum over plane waves, and solving the geodesic equation for a light ray.

In synchronous gauge, a general vector perturbation has only space-space components (h0i = h00 = 0). If we

Fourier transform h, the spatial components are

hij(~x) =

Z
d3k

(2�)3
ei
~k�~x

�
h1(~k)

�
m̂1ik̂j + k̂im̂1j

�
+ ih2(~k)

�
m̂2ik̂j + k̂im̂2j

��
(3.1)

where m̂1 and m̂2 are two unit vectors orthogonal to wave direction k̂ and to each other. The factor of i is inserted here

to ensure that reality implies ha(~k) = h�a(�
~k) for a = 1; 2. With no loss of generality, we can choose the propagation

direction of light to be in the ẑ direction. Then, write the three orthogonal vectors as

k̂ =
�p

1� �2 cos �;
p
1� �2 sin�; �

�
(3.2)

m̂1 = (sin�;� cos�; 0) (3.3)

m̂2 =
�
�� cos�;�� sin�;

p
1� �2

�
: (3.4)

Note that we have assumed here that the vector �eld is time independent. We argue that this is a conservative

assumption. In a cosmological setting, vectors �elds decay over time; the only way they can be important is if they

are continuously seeded and so remain relatively constant with time.

Consider a photon travelling through this �eld with direction ẑ+
_~d, where the dot denotes d=dt = n̂�@=@x� and the

zero order direction is n� = (1; ẑ) = (1; 0; 0; 1). Since the vector �eld is assumed to be time independent, d=dt = @=@z.

The geodesic equation for the light is then

�di = ��i�� n̂
�n̂� = ��ij n̂�n̂�

�
@hj�

@x�
�

1

2

@h��

@xj

�

= �

�
@hiz

@z
�

1

2

@hzz

@xi

�
(3.5)

The last equality follows since h�� has no time components. Upon inserting our expression for h�� into 3.5 we �nd

�di = _Hi (3.6)

with

Hi
�

Z
d3k

(2�)3
�eikz� (�h1 sin�+ ih2� cos�; h1 cos�+ ih2� sin�) : (3.7)

Since the displacement angle _di / Hi / �, it does not get a large contribution from modes with � = 0; in fact these

contribute relatively little. Rather, _d is of order the �eld strength h1; h2.

If h1(~k) and h2(~k) are random �elds, then the change in the direction of a photon travelling from z = 0 to z = D

will be zero on average. The mean square direction change can be calculated:

hj�
_~dj2i = h( _di(D) � _di(0))( _di(D) � _di(0))i

=
1

2�2

Z
1

0

dkk2
Z 1

�1

d�
�
�2P1(k) + �4P2(k)

�
(1� cos(k�D)) (3.8)

where the power spectra are de�ned so that

hha(~k)h
�

b (
~k0)i = hha(~k)hb(�~k

0)i = (2�)3�(~k � ~k0)�abPa(k): (3.9)

The oscillatory term in 3.8 is irrelevant for large distances, and we are left with
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hj�
_~dj2i =

2

3
hh1

2
i +

2

5
hh2

2
i (3.10)

So, even after travelling large distances in a vector �eld, light has experienced little directional change. This is identical

to the case of a tensor �eld but dramatically di�erent than the scalar �eld, for which hj�
_~dj2i / D.

Kaiser and Ja�e showed that many observables are governed by the power spectrum

PH(k) �

Z
1

�1

dze�ikzh ~H(0) � ~H(z)i: (3.11)

Typically the mean square displacement after a distance k�1 in a random �eld is given by PH=k which is proportional

to k�3 for scalar perturbations but k0 for tensor perturbations.

We now calculate this power spectrum for vector modes:

PH (k) =
1

4�2

Z
1

�1

dz

Z
1

0

dk0
Z 1

�1

d�k0
2 �
�2P1(k

0) + �4P2(k
0)
�
eiz(k

0��k)

=
1

2�

Z
1

0

k0
2
dk0
Z 1

�1

d�
�
�2P1(k

0) + �4P2(k
0)
�
�(k0�� k)

=
1

2�

Z
1

k

k0dk0

"�
k

k0

�2

P1(k
0) +

�
k

k0

�4

P2(k
0)

#
(3.12)

On large scales (small k) then, PH (k)=k / k for vector modes. Thus in the physical cases where tensor modes produce

a logarithmic divergence, vector modes produce no such divergence.

One example of this is the question of the angular deection of an image from its unperturbed location. On average,

the image is unchanged, but the rms angular deviation is

��rms =
1

D

*�Z z1

z0

dzH(z)

�2
+1=2

; (3.13)

where the light starts at z0 and travels a distance D to z1. Kaiser and Ja�e showed that this angular deviation

is proportional to D1=2 for scalar perturbations and
p
ln(D)=D for tensor perturbations. To calculate it for vector

perturbations, we again follow Kaiser and Ja�e to write

��rms =
1

D

�
2

�

Z
dk

k2
PH(k) sin

2(kD=2)

�1=2

=
1

D

 
2

D�2

Z
1

0

dk0

k0

Z k0D=2

0

dx sin2 x[P1(k
0) + (2x=k0D)2P2(k

0)]

!1=2

; (3.14)

where in the last line here, we have used 3.12, changed the order of integration, and introduced the dummy variable

x = kD=2. Performing the x integral, but keeping only terms to highest order in k0D leads to

��rms =
1

D

�
1

2�2

Z
1

0

dk0
�
P1(k

0) +
1

3
P2(k

0)

��1=2

: (3.15)

So the rms displacement angle is of order hh2i1=2=kVD where kV is the wavenumber where the power spectrum peaks.

This is even smaller than the corresponding displacement angle for tensor modes, which was enhanced (slightly) by a

logarithm.

IV. CONCLUSIONS

Even if there is a background of vector modes perturbing the gravitational metric, light should travel virtually

undeected over large distances. This conculsion is markedly di�erent than what we expect if there are scalar
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perturbations to the metric, since scalar perturbations can act coherently over large distances. Even in the best

case, where vector modes remain constant, any coherent action is defused by a suppression of the perturbation in the

resonant direction (i.e. the �2 factor in 2.8). Vector modes, just like tensor modes, do not bend light.

We thank Andrew Ja�e and Albert Stebbins for useful discussions. This work was supported in part by the DOE

and by NASA grant NAGW-2788 at Fermilab.
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